10-tough chordal graphs are Hamiltonian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43930062" target="_blank" >RIV/49777513:23520/17:43930062 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0095895616300478" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0095895616300478</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2016.07.002" target="_blank" >10.1016/j.jctb.2016.07.002</a>
Alternative languages
Result language
angličtina
Original language name
10-tough chordal graphs are Hamiltonian
Original language description
Chen et al. (1998) proved that every 18-tough chordal graph has a Hamilton cycle. Improving upon their bound, we show that every 10-tough chordal graph is Hamiltonian (in fact, Hamilton-connected). We use Aharoni and Haxell’s hypergraph extension of Hall’s Theorem as our main tool.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory, Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
122
Issue of the periodical within the volume
JAN 2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
417-427
UT code for WoS article
000389788300019
EID of the result in the Scopus database
2-s2.0-84996844097