All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Long paths and toughness of k-trees and chordal planar graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43953232" target="_blank" >RIV/49777513:23520/19:43953232 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0012365X18302759?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X18302759?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2018.08.017" target="_blank" >10.1016/j.disc.2018.08.017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Long paths and toughness of k-trees and chordal planar graphs

  • Original language description

    We show that every k-tree of toughness greater than k/3 is Hamilton-connected for k &gt;= 3. (In particular, chordal planar graphs of toughness greater than 1 are Hamilton-connected.) This improves the result of Broersma et al. (2007) and generalizes the result of Böhme et al. (1999). On the other hand, we present graphs whose longest paths are short. Namely, we construct 1-tough chordal planar graphs and 1-tough planar 3-trees, and we show that the shortness exponent of the class is 0, at most log_{30}22, respectively. Both improve the bound of Böhme et al. Furthermore, the construction provides k-trees (for k &gt;= 4) of toughness greater than 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    DISCRETE MATHEMATICS

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    342

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    55-63

  • UT code for WoS article

    000451939300006

  • EID of the result in the Scopus database

    2-s2.0-85054444831