Hermite interpolation by piecewise polynomial surfaces with polynomial area element
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931520" target="_blank" >RIV/49777513:23520/17:43931520 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10370823
Result on the web
<a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2017.02.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >10.1016/j.cagd.2017.02.003</a>
Alternative languages
Result language
angličtina
Original language name
Hermite interpolation by piecewise polynomial surfaces with polynomial area element
Original language description
This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
February
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
30-47
UT code for WoS article
000398755900003
EID of the result in the Scopus database
2-s2.0-85014455183