Polynomial calculus space and resolution width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00518434" target="_blank" >RIV/67985840:_____/19:00518434 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/FOCS.2019.00081" target="_blank" >http://dx.doi.org/10.1109/FOCS.2019.00081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FOCS.2019.00081" target="_blank" >10.1109/FOCS.2019.00081</a>
Alternative languages
Result language
angličtina
Original language name
Polynomial calculus space and resolution width
Original language description
We show that if a k-CNF requires width w to refute in resolution, then it requires space √w to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is the first analogue, in polynomial calculus, of Atserias and Dalmau’s result lower-bounding clause space in resolution by resolution width. As a by-product of our new approach to space lower bounds we give a simple proof of Bonacina’s recent result that total space in resolution (the total number of variable occurrences that must be kept in memory) is lower-bounded by the width squared. As corollaries of the main result we obtain some new lower bounds on the PCR space needed to refute specific formulas, as well as partial answers to some open problems about relations between space, size, and degree for polynomial calculus.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05497S" target="_blank" >GA19-05497S: Complexity of mathematical proofs and structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
60th Annual Symposium on Foundations of Computer Science (FOCS)
ISBN
978-1-7281-4952-3
ISSN
0272-5428
e-ISSN
—
Number of pages
13
Pages from-to
1325-1337
Publisher name
IEEE
Place of publication
Piscataway
Event location
Baltimore
Event date
Nov 9, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000510015300072