All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Random resolution refutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477098" target="_blank" >RIV/67985840:_____/17:00477098 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.1" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2017.1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.1" target="_blank" >10.4230/LIPIcs.CCC.2017.1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Random resolution refutations

  • Original language description

    We study the random resolution refutation system definedin [Buss et al. 2014]. This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the other hand, if P does not equal NP, then random resolution cannot be polynomially simulated by any proof system in which correctness of proofs is checkable in polynomial time. We prove several upper and lower bounds on the width and size of random resolution refutations of explicit and random unsatisfiable CNF formulas. Our main result is a separation between polylogarithmic width random resolution and quasipolynomial size resolution, which solves the problem stated in [Buss et al. 2014]. We also prove exponential size lower bounds on random resolution refutations of the pigeonhole principle CNFs, and of a family of CNFs which have polynomial size refutations in constant depth Frege.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    32nd Computational Complexity Conference (CCC 2017)

  • ISBN

    978-3-95977-040-8

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Riga

  • Event date

    Jul 6, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article