All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Random resolution refutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504571" target="_blank" >RIV/67985840:_____/19:00504571 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00037-019-00182-7" target="_blank" >http://dx.doi.org/10.1007/s00037-019-00182-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00037-019-00182-7" target="_blank" >10.1007/s00037-019-00182-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Random resolution refutations

  • Original language description

    We study the random resolution refutation system defined in Buss et al. (J Symb Logic 79(2):496–525, 2014). This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the other hand, if P≠ NP, then random resolution cannot be polynomially simulated by any proof system in which correctness of proofs is checkable in polynomial time. We prove several upper and lower bounds on the width and size of random resolution refutations of explicit and random unsatisfiable CNF formulas. Our main result is a separation between polylogarithmic width random resolution and quasipolynomial size resolution, which solves the problem stated in Buss et al. (2014). We also prove exponential size lower bounds on random resolution refutations of the pigeonhole principle CNFs, and of a family of CNFs which have polynomial size refutations in constant-depth Frege.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Complexity

  • ISSN

    1016-3328

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    55

  • Pages from-to

    185-239

  • UT code for WoS article

    000467906700002

  • EID of the result in the Scopus database

    2-s2.0-85064660360