Random resolution refutations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504571" target="_blank" >RIV/67985840:_____/19:00504571 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00037-019-00182-7" target="_blank" >http://dx.doi.org/10.1007/s00037-019-00182-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00037-019-00182-7" target="_blank" >10.1007/s00037-019-00182-7</a>
Alternative languages
Result language
angličtina
Original language name
Random resolution refutations
Original language description
We study the random resolution refutation system defined in Buss et al. (J Symb Logic 79(2):496–525, 2014). This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the other hand, if P≠ NP, then random resolution cannot be polynomially simulated by any proof system in which correctness of proofs is checkable in polynomial time. We prove several upper and lower bounds on the width and size of random resolution refutations of explicit and random unsatisfiable CNF formulas. Our main result is a separation between polylogarithmic width random resolution and quasipolynomial size resolution, which solves the problem stated in Buss et al. (2014). We also prove exponential size lower bounds on random resolution refutations of the pigeonhole principle CNFs, and of a family of CNFs which have polynomial size refutations in constant-depth Frege.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Complexity
ISSN
1016-3328
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
55
Pages from-to
185-239
UT code for WoS article
000467906700002
EID of the result in the Scopus database
2-s2.0-85064660360