Combination of Neural Networks for Multi-label Document Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932538" target="_blank" >RIV/49777513:23520/17:43932538 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-59569-6_34" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59569-6_34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59569-6_34" target="_blank" >10.1007/978-3-319-59569-6_34</a>
Alternative languages
Result language
angličtina
Original language name
Combination of Neural Networks for Multi-label Document Classification
Original language description
This paper deals with multi-label classification of Czech documents using several combinations of neural networks. It is motivated by the assumption that different nets can keep some complementary information and that it should be useful to combine them. The main contribution of this paper consists in a comparison of several combination approaches to improve the results of the individual neural nets. We experimentally show that the results of all the combination approaches outperform the individual nets, however they are comparable.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Natural Language Processing and Information Systems. NLDB 2017
ISBN
978-3-319-59568-9
ISSN
0302-9743
e-ISSN
neuvedeno
Number of pages
5
Pages from-to
278-282
Publisher name
Springer
Place of publication
Cham
Event location
Liege, Belgium
Event date
Jun 21, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—