Semi-automatic Facial Key-Point Dataset Creation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932649" target="_blank" >RIV/49777513:23520/17:43932649 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-66429-3_66" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-66429-3_66</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-66429-3_66" target="_blank" >10.1007/978-3-319-66429-3_66</a>
Alternative languages
Result language
angličtina
Original language name
Semi-automatic Facial Key-Point Dataset Creation
Original language description
This paper presents a semi-automatic method for creating a large scale facial key-point dataset from a small number of annotated images. The method consists of annotating the facial images by hand, training Active Appearance Model (AAM) from the annotated images and then using the AAM to annotate a large number of additional images for the purpose of training a neural network. The images from the AAM are then re-annotated by the neural network and used to validate the precision of the proposed neural network detections. The neural network architecture is presented including the training parameters.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Speech and Computer 19th International Conference, SPECOM 2017, Hatfield, UK, September 12-16, 2017, Proceedings
ISBN
978-3-319-66428-6
ISSN
0302-9743
e-ISSN
neuvedeno
Number of pages
7
Pages from-to
662-668
Publisher name
Springer
Place of publication
Cham
Event location
Hatfield, Hertfordshire, United Kingdom
Event date
Sep 12, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—