All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Schrijver graphs and projective quadrangulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932808" target="_blank" >RIV/49777513:23520/17:43932808 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-44479-6_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-44479-6_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-44479-6_20" target="_blank" >10.1007/978-3-319-44479-6_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Schrijver graphs and projective quadrangulations

  • Original language description

    In a recent paper [J. Combin. Theory Ser. B}, 113 (2015), pp. 1-17], the authors have extended the concept of quadrangulation of a surface to higher dimension, and showed that every quadrangulation of the n-dimensional projective space P^n is at least (n+2)-chromatic, unless it is bipartite. They conjectured that for any integers k≥1 and n≥2k+1, the Schrijver graph SG(n,k) contains a spanning subgraph which is a quadrangulation of P^{n−2k}. The purpose of this paper is to prove the conjecture.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek

  • ISBN

    978-3-319-44478-9

  • Number of pages of the result

    22

  • Pages from-to

    505-526

  • Number of pages of the book

    810

  • Publisher name

    Springer

  • Place of publication

    Neuveden

  • UT code for WoS chapter