Schrijver graphs and projective quadrangulations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932808" target="_blank" >RIV/49777513:23520/17:43932808 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-44479-6_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-44479-6_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-44479-6_20" target="_blank" >10.1007/978-3-319-44479-6_20</a>
Alternative languages
Result language
angličtina
Original language name
Schrijver graphs and projective quadrangulations
Original language description
In a recent paper [J. Combin. Theory Ser. B}, 113 (2015), pp. 1-17], the authors have extended the concept of quadrangulation of a surface to higher dimension, and showed that every quadrangulation of the n-dimensional projective space P^n is at least (n+2)-chromatic, unless it is bipartite. They conjectured that for any integers k≥1 and n≥2k+1, the Schrijver graph SG(n,k) contains a spanning subgraph which is a quadrangulation of P^{n−2k}. The purpose of this paper is to prove the conjecture.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek
ISBN
978-3-319-44478-9
Number of pages of the result
22
Pages from-to
505-526
Number of pages of the book
810
Publisher name
Springer
Place of publication
Neuveden
UT code for WoS chapter
—