All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonparametric Kernel Regression and Its Real Data Application

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43933044" target="_blank" >RIV/49777513:23520/17:43933044 - isvavai.cz</a>

  • Result on the web

    <a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonparametric Kernel Regression and Its Real Data Application

  • Original language description

    This paper deals with the problem of nonparametric kernel estimation, particularly nonparametric kernel estimation of the regression functions. This nonparametric approach is useful in the case, when we need to find some relation between a pair of random variables for further analysis. There are many fields of application in macroeconomics and therefore this paper is focused on estimates of the regression functions on some selected real data sets (number of deaths, marriages and births etc.) First, there is described nonparametric kernel estimation of the regression function with using Nadaraya–Watson approach and influences of the main parameters (smoothing parameter, kernel function etc.) on the properties of the regression function. Then, there is analyzed smoothing pa-rameter and its estimation by different approaches (Penalty methods, RSS method, Cross-validation method and other proposed methods). The obtained results are applied and discussed on selected real data sets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50202 - Applied Economics, Econometrics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    35th International Conference Mathematical Methods in Economics, MME2017, Conference Proceedings

  • ISBN

    978-80-7435-678-0

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    813-818

  • Publisher name

    Faculty of Informatics and Management, University of Hradec Králové

  • Place of publication

    Hradec Králové

  • Event location

    Hradec Králové, Czech Republic

  • Event date

    Sep 13, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000427151400139