All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bandwidth Selection Problem in Nonparametric Functional Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094996" target="_blank" >RIV/00216224:14310/17:00094996 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.czso.cz/documents/10180/45606531/32019717q3107.pdf/d06c45a7-674c-4c4f-ac7b-dfea3293e915?version=1.0" target="_blank" >https://www.czso.cz/documents/10180/45606531/32019717q3107.pdf/d06c45a7-674c-4c4f-ac7b-dfea3293e915?version=1.0</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bandwidth Selection Problem in Nonparametric Functional Regression

  • Original language description

    The focus of this paper is the nonparametric regression where the predictor is a functional random variable, and the response is a scalar. Functional kernel regression belongs to popular nonparametric methods used for this purpose. The two key problems in functional kernel regression are choosing an optimal smoothing parameter and selecting an appropriate semimetric as a distance measure. The former is the focus of this paper – several data-driven methods for optimal bandwidth selection are described and discussed. The performance of these methods is illustrated in a real data application. A conclusion is drawn that local bandwidth selection methods are more appropriate in the functional setting.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA15-06991S" target="_blank" >GA15-06991S: Functional data analysis and related topics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistika: Statistics and Economy Journal

  • ISSN

    0322-788X

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    9

  • Pages from-to

    107-115

  • UT code for WoS article

    000419161000009

  • EID of the result in the Scopus database

    2-s2.0-85030654881