All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Finite Volume Particle Method: Toward a Meshless Technique for Biomedical Fluid Dynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43933081" target="_blank" >RIV/49777513:23520/18:43933081 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/B978-0-12-811718-7.00019-8" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-811718-7.00019-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/B978-0-12-811718-7.00019-8" target="_blank" >10.1016/B978-0-12-811718-7.00019-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Finite Volume Particle Method: Toward a Meshless Technique for Biomedical Fluid Dynamics

  • Original language description

    Very large structural deformations are characteristic of biomechanical fluid-structure interaction (FSI) systems. In heart valves, in particular, leaflet motion is on the order of the scale of the flow domain. Artery walls and red blood cells also undergo relatively large deformations. In this chapter we describe an emerging meshless method, the finite volume particle method (FVPM), which has the potential to solve some of the difficulties of modeling fluid flow with large wall motion and coupled fluid-structure dynamics. The FVPM approach may be understood as a hybrid of smoothed particle hydrodynamics (SPH) and the classical mesh-based finite volume method. It inherits the meshless character of SPH along with the conservation and consistency properties of finite volume methods. The basic concepts of the method are outlined and the extensions required for its practical application to cardiovascular flow are explained. Detailed validation is performed for a benchmark problem of flow coupled with rigid body motion, and a preliminary application to a 2D mechanical heart valve model is presented.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

  • ISBN

    978-0-12-811718-7

  • Number of pages of the result

    14

  • Pages from-to

    341-354

  • Number of pages of the book

    454

  • Publisher name

    Elsevier Ltd.

  • Place of publication

    London

  • UT code for WoS chapter