Contour curves and isophotes on rational ruled surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952056" target="_blank" >RIV/49777513:23520/18:43952056 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0167839618300785?token=B651C5C37723FC418DA1E27268495BF530228145712709566E2493A9CC1F15D43B9B10BCE5F893BB79BD8DC329F72C58" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0167839618300785?token=B651C5C37723FC418DA1E27268495BF530228145712709566E2493A9CC1F15D43B9B10BCE5F893BB79BD8DC329F72C58</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2018.06.006" target="_blank" >10.1016/j.cagd.2018.06.006</a>
Alternative languages
Result language
angličtina
Original language name
Contour curves and isophotes on rational ruled surfaces
Original language description
Ruled surfaces, i.e., surfaces generated by a one-parametric set of lines, are widely used in the field of applied geometry. An isophote on a surface is a curve consisting of those surface points whose normals form a constant angle with a fixed vector. Choosing the angle equal to pi/2 we obtain a special instance of the isophote - the so called contour curve. While contours on rational ruled surfaces are rational curves, this is no longer true for the isophotes. Hence we will provide a formula for their genus. Moreover we will show that the only surfaces with a rational generic contour are just the rational ruled surfaces and a particular class of cubic surfaces. In addition we will deal with a reconstruction of ruled surfaces from their silhouettes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
OCT 2018
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000444930100001
EID of the result in the Scopus database
—