Reconstruction of rational ruled surfaces from their silhouettes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962531" target="_blank" >RIV/49777513:23520/21:43962531 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0747717120300833#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0747717120300833#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jsc.2020.08.002" target="_blank" >10.1016/j.jsc.2020.08.002</a>
Alternative languages
Result language
angličtina
Original language name
Reconstruction of rational ruled surfaces from their silhouettes
Original language description
We provide algorithms to reconstruct rational ruled surfaces in three-dimensional projective space from the “apparent contour” of a single projection to the projective plane. We deal with the case of tangent developables and of general projections to of rational normal scrolls. In the first case, we use the fact that every such surface is the projection of the tangent developable of a rational normal curve, while in the second we start by reconstructing the rational normal scroll. In both instances we then reconstruct the correct projection to of these surfaces by exploiting the information contained in the singularities of the apparent contour.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF SYMBOLIC COMPUTATION
ISSN
0747-7171
e-ISSN
—
Volume of the periodical
104
Issue of the periodical within the volume
May- June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
366-380
UT code for WoS article
000598670000020
EID of the result in the Scopus database
2-s2.0-85091252192