All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semantic Space Transformations for Cross-Lingual Document Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952471" target="_blank" >RIV/49777513:23520/18:43952471 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_60" target="_blank" >http://dx.doi.org/10.1007/978-3-030-01418-6_60</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_60" target="_blank" >10.1007/978-3-030-01418-6_60</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semantic Space Transformations for Cross-Lingual Document Classification

  • Original language description

    This paper deals with cross-lingual document classification. Cross-linguality is achieved by training monolingual semantic spaces and then using a transform method to project word vectors into a unified space. The main goal of this paper consists in the evaluation of three promising transform methods utilized for this task. Convolutional neural network (CNN) classifier is used and its performance is compared with a standard maximum entropy classifier. The proposed methods are evaluated on four languages, namely English, German, Spanish and Italian from the Reuters corpus. It is shown that the results of all transformation methods are close to each other, however the orthogonal transformation gives generally slightly better results when CNN with trained embeddings is used. The experimental results also show that convolutional network achieves better results than maximum entropy classifier.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2018

  • ISBN

    978-3-030-01417-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    608-616

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Rhodos, Řecko

  • Event date

    Oct 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article