Semantic Space Transformations for Cross-Lingual Document Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952471" target="_blank" >RIV/49777513:23520/18:43952471 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-01418-6_60" target="_blank" >http://dx.doi.org/10.1007/978-3-030-01418-6_60</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01418-6_60" target="_blank" >10.1007/978-3-030-01418-6_60</a>
Alternative languages
Result language
angličtina
Original language name
Semantic Space Transformations for Cross-Lingual Document Classification
Original language description
This paper deals with cross-lingual document classification. Cross-linguality is achieved by training monolingual semantic spaces and then using a transform method to project word vectors into a unified space. The main goal of this paper consists in the evaluation of three promising transform methods utilized for this task. Convolutional neural network (CNN) classifier is used and its performance is compared with a standard maximum entropy classifier. The proposed methods are evaluated on four languages, namely English, German, Spanish and Italian from the Reuters corpus. It is shown that the results of all transformation methods are close to each other, however the orthogonal transformation gives generally slightly better results when CNN with trained embeddings is used. The experimental results also show that convolutional network achieves better results than maximum entropy classifier.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2018
ISBN
978-3-030-01417-9
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
9
Pages from-to
608-616
Publisher name
Springer
Place of publication
Cham
Event location
Rhodos, Řecko
Event date
Oct 4, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—