All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Training neural network over encrypted data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21025BN" target="_blank" >RIV/61988987:17610/20:A21025BN - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/abstract/document/9204073" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9204073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/DSMP47368.2020.9204073" target="_blank" >10.1109/DSMP47368.2020.9204073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Training neural network over encrypted data

  • Original language description

    We are answering the question whenever systems with convolutional neural network classifier trained over plain and encrypted data keep the ordering according to accuracy. Our motivation is need for designing convolutional neural network classifiers when data in their plain form are not accessible because of private company policy or sensitive data gathered by police. We propose to use a combination of fully connected autoencoder together with a convolutional neural network classifier. The autoencoder transforms the data info form that allows the convolutional classifier to be trained. We present three experiments that show the ordering of systems over plain and encrypted data. The results show that the systems indeed keep the ordering, and thus a NN designer can select appropriate architecture over encrypted data and later let data owner train or fine-tune the system/CNN classifier on the plain data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020

  • ISBN

    978-1-7281-3214-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    23-27

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Lviv, Ukrajina

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article