All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gaussian Process Quadrature Moment Transform

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952475" target="_blank" >RIV/49777513:23520/18:43952475 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/TAC.2017.2774444" target="_blank" >https://doi.org/10.1109/TAC.2017.2774444</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2017.2774444" target="_blank" >10.1109/TAC.2017.2774444</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gaussian Process Quadrature Moment Transform

  • Original language description

    Computation of moments of transformed random variables is a problem appearing in many engineering applications. The current methods for moment transformation are mostly based on the classical quadrature rules, which cannot account for the approximation errors. Our aim is to design a method for moment transformation of Gaussian random variables, which accounts for the error in the numerically computed mean. We employ an instance of Bayesian quadrature, called Gaussian process quadrature (GPQ), which allows us to treat the integral itself as a random variable, where the integral variance informs us about the incurred integration error. Experiments on the coordinate transformation and nonlinear filtering examples show that the proposed GPQ moment transform performs better than the classical transforms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptive Approaches to State Estimation of Nonlinear Stochastic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    2844-2854

  • UT code for WoS article

    000443705900007

  • EID of the result in the Scopus database

    2-s2.0-85035117396