All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Networks for Multi-lingual Multi-label Document Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952541" target="_blank" >RIV/49777513:23520/18:43952541 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-01418-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_8" target="_blank" >10.1007/978-3-030-01418-6_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Networks for Multi-lingual Multi-label Document Classification

  • Original language description

    This paper proposes a novel approach for multi-lingual multilabel document classification based on neural networks. We use popular convolutional neural networks for this task with three different configurations. The first one uses static word2vec embeddings that are let as is, while the second one initializes it with word2vec and fine-tunes the embeddings while learning on the available data. The last method initializes embeddings randomly and then they are optimized to the classification task. The proposed method is evaluated on four languages, namely English, German, Spanish and Italian from the Reuters corpus. Experimental results show that the proposed approach is efficient and the best obtained F-measure reaches 84%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2018

  • ISBN

    978-3-030-01417-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    73-83

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Rhodes, Greece

  • Event date

    Oct 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article