All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generation of Synthetic Images of Full-Text Documents

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952605" target="_blank" >RIV/49777513:23520/18:43952605 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99579-3_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99579-3_8" target="_blank" >10.1007/978-3-319-99579-3_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generation of Synthetic Images of Full-Text Documents

  • Original language description

    In this paper, we present an algorithm for generating images of full-text documents. Such images can be used to train and evaluate models of optical character recognition. The algorithm is modular, individual parts can be changed and tweaked to generate desired images. We describe a method for obtaining background images of paper from already digitalized documents.We use a Variational Autoencoder to train a generative model of these backgrounds enabling the generation of similar background images as the training ones on the fly. The module for printing the text uses large text corpora, font, and suitable positional and brightness noise to obtain believable results. We use Tesseract OCR to compare the real world and generated images and observe that the recognition rate is very similar indicating the proper appearance of the synthetic images. Furthermore, the mistakes made by the OCR system in both cases are alike. Finally, the system generates detailed, structured annotation of the synthesized image.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18–22, 2018, Proceedings

  • ISBN

    978-3-319-99578-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    8

  • Pages from-to

    68-75

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Leipzig, Germany

  • Event date

    Sep 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article