All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Okinawa and Arakawa theorems for graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43951055" target="_blank" >RIV/49777513:23520/19:43951055 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1134%2FS0081543819020147.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1134%2FS0081543819020147.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S0081543819020147" target="_blank" >10.1134/S0081543819020147</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Okinawa and Arakawa theorems for graphs

  • Original language description

    The present paper is devoted to the further development of the discrete theory of Riemann surfaces. This theory considers finite graphs as analogous of Riemann surfaces and branched coverings of graphs as holomorphic maps. The main object of investigation are automorphism groups of graphs acting freely on the set of arcs and the corresponding regular coverings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Steklov Institute of Mathematics

  • ISSN

    0081-5438

  • e-ISSN

    1531-8605

  • Volume of the periodical

    304

  • Issue of the periodical within the volume

    Suppl. 1

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    8

  • Pages from-to

    "S133"-"S140"

  • UT code for WoS article

    000470756500013

  • EID of the result in the Scopus database

    2-s2.0-85064689207