On discrete versions of two Accola's theorems about automorphism groups of Riemann surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932702" target="_blank" >RIV/49777513:23520/17:43932702 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs13324-016-0138-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs13324-016-0138-4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-016-0138-4" target="_blank" >10.1007/s13324-016-0138-4</a>
Alternative languages
Result language
angličtina
Original language name
On discrete versions of two Accola's theorems about automorphism groups of Riemann surfaces
Original language description
In this paper we give a few discrete versions of Robert Accola’s results on Riemann surfaces with automorphism groups admitting partitions. As a consequence, we establish a condition for Gamma-hyperelliptic involution on a graph to be unique. Also we construct an infinite family of graphs with more than one Gamma-hyperelliptic involution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
233-243
UT code for WoS article
000407284000002
EID of the result in the Scopus database
2-s2.0-85026860576