Closure for {K(1,4),K(1,4)+e}-free graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43953317" target="_blank" >RIV/49777513:23520/19:43953317 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0095895618300546" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0095895618300546</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2018.06.006" target="_blank" >10.1016/j.jctb.2018.06.006</a>
Alternative languages
Result language
angličtina
Original language name
Closure for {K(1,4),K(1,4)+e}-free graphs
Original language description
We introduce a closure concept for hamiltonicity in the class of {K(1,4),K(1,4)+e}-free graphs, extending the closure for claw-free graphs introduced by Ryjáček (1997). The closure of a {K(1,4),K(1,4)+e}-free graph G with minimum degree at least 6 is uniquely determined, is a line graph of a triangle-free graph, and preserves hamiltonicity or non-hamiltonicity of G. As applications, we show that many results on claw-free graphs can be directly extended to the class of {K(1,4),K(1,4)+e}-free graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMBINATORIAL THEORY SERIES B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
134
Issue of the periodical within the volume
January 2019
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
239-263
UT code for WoS article
000452250300011
EID of the result in the Scopus database
—