On forbidden induced subgraphs for K(1,3)-free perfect graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43954796" target="_blank" >RIV/49777513:23520/19:43954796 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0012365X19300470" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X19300470</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2019.01.036" target="_blank" >10.1016/j.disc.2019.01.036</a>
Alternative languages
Result language
angličtina
Original language name
On forbidden induced subgraphs for K(1,3)-free perfect graphs
Original language description
We study {K(1,3),Y}-free graphs, and show that the following three statements are equivalent: (1) every connected {K(1,3),Y}-free graph which is distinct from an odd cycle and which has independence number at least 3 is perfect; (2) every connected {K(1,3),Y}-free graph which is distinct from an odd cycle and which has independence number at least 3 is omega-colourable; (3) Y is isomorphic to an induced subgraph of P(5) or Z(2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
342
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
1602-1608
UT code for WoS article
000466833400007
EID of the result in the Scopus database
2-s2.0-85062663356