Forbidden induced subgraphs for perfectness of claw-free graphs of independence number at least 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965406" target="_blank" >RIV/49777513:23520/22:43965406 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.disc.2022.112837" target="_blank" >https://doi.org/10.1016/j.disc.2022.112837</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2022.112837" target="_blank" >10.1016/j.disc.2022.112837</a>
Alternative languages
Result language
angličtina
Original language name
Forbidden induced subgraphs for perfectness of claw-free graphs of independence number at least 4
Original language description
For every graph X, we consider the class of all connected {K(1,3), X}-free graphs which are distinct from an odd cycle and have independence number at least 4, and we show that all graphs in the class are perfect if and only if X is an induced subgraph of some of P6, K1 ∪ P5, 2P3, Z2 or K1 ∪ Z1. Furthermore, for X chosen as 2K1 ∪ K3, we list all eight imperfect graphs belonging to the class; and for every other choice of X, we show that there are infinitely many such graphs. In addition, for X chosen as B(1,2), we describe the structure of all imperfect graphs in the class.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
1872-681X
Volume of the periodical
345
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
nestrankovano
UT code for WoS article
000784329800017
EID of the result in the Scopus database
2-s2.0-85125796942