On 2-Connected Spanning Subgraphs with Bounded Degree in K1,r-Free Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43914836" target="_blank" >RIV/49777513:23520/11:43914836 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00373-010-1011-0" target="_blank" >http://dx.doi.org/10.1007/s00373-010-1011-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-010-1011-0" target="_blank" >10.1007/s00373-010-1011-0</a>
Alternative languages
Result language
angličtina
Original language name
On 2-Connected Spanning Subgraphs with Bounded Degree in K1,r-Free Graphs
Original language description
For any integer r } 1, an r-trestle of a graph G is a 2-connected spanning subgraph F with maximum degree ?(F) ? r. A graph G is called K1;r-free if G has no K1;r as an induced subgraph. Inspired by the work of Ryj?a?cek and Tk?a?c, we show that every 2-connected K1;r-free graph has an r-trestle. The paper concludes with a corollary of this result for the existence of k-walks and open problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
JP - JAPAN
Number of pages
7
Pages from-to
199-206
UT code for WoS article
000287210400006
EID of the result in the Scopus database
—