Trestles in Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F05%3A00000098" target="_blank" >RIV/49777513:23520/05:00000098 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/05:00000099
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trestles in Graphs
Original language description
For any integer r > 1, an r-trestle is a 2-connected graph F with maximum degree ¢(F) · r. We say that a graph G has an r-trestle if G contains a spanning subgraph which is an r- trestle. A graph G is called K1;r-free if G has no K1;r as an induced subgraph. Inspired by the work of Ryj¶a·cek and Tk¶a·c, we show that every 2-connected K1;r-free graph has an r-trestle. The paper concludes with several open problems.
Czech name
Trestles in Graphs
Czech description
For any integer r > 1, an r-trestle is a 2-connected graph F with maximum degree ¢(F) · r. We say that a graph G has an r-trestle if G contains a spanning subgraph which is an r- trestle. A graph G is called K1;r-free if G has no K1;r as an induced subgraph. Inspired by the work of Ryj¶a·cek and Tk¶a·c, we show that every 2-connected K1;r-free graph has an r-trestle. The paper concludes with several open problems.
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Sixteenth Australasian Workshop on Combinatorial Algorithms (AWOCA 2005)
ISBN
0-646-45252-5
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
147-150
Publisher name
University of Ballarat
Place of publication
Ballarat
Event location
Ballarat, Victoria, Australia
Event date
Jan 1, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—