Automatic face recognition with well-calibrated confidence measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43954846" target="_blank" >RIV/49777513:23520/19:43954846 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10994-018-5756-7" target="_blank" >https://link.springer.com/article/10.1007/s10994-018-5756-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10994-018-5756-7" target="_blank" >10.1007/s10994-018-5756-7</a>
Alternative languages
Result language
angličtina
Original language name
Automatic face recognition with well-calibrated confidence measures
Original language description
Many Automatic face recognition (AFR) methods achieve a high recognition accuracy when the environment is well-controlled. In the case of moderately controlled or fully uncontrolled environments however, the performance of most techniques is dramatically reduced. As a result, the provision of some kind of indication of the likelihood of a recognition being correct is a desirable property of AFR techniques. This work investigates the application of the conformal prediction (CP) framework for extending the output of AFR techniques with well-calibrated measures of confidence. In particular we combine CP with one classifier based on POEM descriptors, one classifier based on SIFT descriptors, and a weighted combination of the similarities computed by the two. We examine and compare the performance of five nonconformity measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Machine Learning
ISSN
0885-6125
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
511-534
UT code for WoS article
000459945900007
EID of the result in the Scopus database
2-s2.0-85052496742