Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955088" target="_blank" >RIV/49777513:23520/19:43955088 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2019.04.029" target="_blank" >10.1016/j.cam.2019.04.029</a>
Alternative languages
Result language
angličtina
Original language name
Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves
Original language description
Methods using Pythagorean hodographs both in Euclidean plane and Minkowski space are often used in geometric modelling when necessary to solve the problem of rationality of offsets of planar domains. A main justification for studying and formulating approximation and interpolation algorithms based on the called Minkowski Pythagorean hodograph (MPH) curves is the fact that they make the trimming procedure of inner offsets considerably simpler. This is why one can find many existing techniques in literature. In this paper a simple computational approach to parametric/geometric Hermite interpolation problem by polynomial MPH curves in R 2,1 is presented and an algorithm to construct such interpolants is described. The main idea is to construct first not a tangent but a normal vector space satisfying the prescribed MPH property that matches the given first order conditions, and then to compute a curve possessing this constructed normal vector space and satisfying all the remaining interpolation conditions. Compared to other methods using special formalisms (e.g. Clifford algebra), the presented approach is based only on solving systems of linear equations. The results are confirmed by number of examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
361
Issue of the periodical within the volume
1 December
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
283-294
UT code for WoS article
000474316500018
EID of the result in the Scopus database
2-s2.0-85065620605