All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Simple Large Scattered 3D Vector Fields Radial Basis Functions Approximation Using Space Subdivision

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955678" target="_blank" >RIV/49777513:23520/19:43955678 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-24289-3_25" target="_blank" >http://dx.doi.org/10.1007/978-3-030-24289-3_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-24289-3_25" target="_blank" >10.1007/978-3-030-24289-3_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Simple Large Scattered 3D Vector Fields Radial Basis Functions Approximation Using Space Subdivision

  • Original language description

    The Radial basis function (RBF) approximation is an efficient method for scattered scalar and vector data fields. However its application is very difficult in the case of large scattered data. This paper presents RBF approximation together with space subdivision technique for large vector fields. For large scattered data sets a space subdivision technique with overlapping 3D cells is used. Blending of overlapped 3D cells is used to obtain continuity and smoothness. The proposed method is applicable for scalar and vector data sets as well. Experiments proved applicability of this approach and results with the tornado large vector field data set are presented.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless methods for large scattered spatio-temporal vector data visualization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Science and Its Applications – ICCSA 2019

  • ISBN

    978-3-030-24288-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    337-350

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Saint Petersburg University, Saint Petersburg

  • Event date

    Jul 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article