All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate Reconstructions of Perturbed Rational Planar Cubics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955845" target="_blank" >RIV/49777513:23520/19:43955845 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-27331-6_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-27331-6_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27331-6_2" target="_blank" >10.1007/978-3-030-27331-6_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate Reconstructions of Perturbed Rational Planar Cubics

  • Original language description

    This paper is devoted to a problem from geometric modelling and related applications when exact symbolic computations are sometimes used also on objects given inexactly, i.e., when it is not adequately respected that numerical or input errors may significantly influence fundamental properties of considered algebraic varieties, including e.g. their rationality. We formulate a simple algorithm for an approximation of a non-rational planar cubic which is assumed to be a perturbation of some unknown rational planar cubic. The input curve is given by a perturbed polynomial or by perturbed points sampled from the original curve. The algorithm consists of two main parts. First, we suggest geometric methods for the estimation of a singular point of the original curve. Then we select from the six-dimensional subspace of all rational cubics with a given singular point a suitable one that may also satisfy some further criteria. The designed method is presented on several commented examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advanced Methods for Geometric Modeling and Numerical Simulation

  • ISBN

    978-3-030-27330-9

  • ISSN

    2281-518X

  • e-ISSN

    2281-5198

  • Number of pages

    19

  • Pages from-to

    23-41

  • Publisher name

    Springer,

  • Place of publication

    Cham

  • Event location

    Řím

  • Event date

    Jan 22, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article