Note on approximate symmetries of perturbed planar curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956688" target="_blank" >RIV/49777513:23520/19:43956688 - isvavai.cz</a>
Result on the web
<a href="http://www.vydavatelskyservis.cz/knihy/cgg2019.pdf" target="_blank" >http://www.vydavatelskyservis.cz/knihy/cgg2019.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Note on approximate symmetries of perturbed planar curves
Original language description
In this paper, we formulate a certain modification of the method for an approximate reconstruction of an inexact planar curve which is assumed to be a perturbation of some unknown planar symmetric curve. The input curve is given by a perturbed polynomial and the approach follows results from the recent paper. The computation is presented on one particular example.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů