Duffing Equation with Nonlinearities Between Eigenvalues
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956024" target="_blank" >RIV/49777513:23520/19:43956024 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-26987-6_13.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-26987-6_13.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26987-6_13" target="_blank" >10.1007/978-3-030-26987-6_13</a>
Alternative languages
Result language
angličtina
Original language name
Duffing Equation with Nonlinearities Between Eigenvalues
Original language description
In this article, we investigate the periodic nonlinear second order ordinary differential equation with damping u''(x) + r (x) u'(x) + g(x, u(x)) = f (x) , x ∈ [0, 2π] , u(0) = u(2π) , u'(0) = u'(2π) , where g is a L1-Caratheodory function, r ∈ C([0, 2π]), r ', f ∈ L1(0, 2π). We obtain a solution to this problem if a quotient g(x,s)/s lies between 0, 1/4+ ˜r (x) and 1/4 + ˜r (x), 1 + ˜r (x) or in interval (n^2 + ˜r (x), (n + 1)^2 + ˜r (x)), n ∈ N, where ˜ r (x) =r (x)/4+ r (x)'/2 . We use variational method and suppose that for functions u = u(x, a) satisfying lima→±∞ u(x, a) = ±∞ the function F(s) = int_0^2π int_0^s [−r'(x)u(x, a) + g(x,u(x, a)) − f (x) ] da dx has a critical point.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nonlinear Analysis and Boundary Value Problems
ISBN
978-3-030-26986-9
ISSN
2194-1009
e-ISSN
2194-1017
Number of pages
11
Pages from-to
199-209
Publisher name
Springer Proceedings in Mathematics & Statistics
Place of publication
Cham
Event location
Santiago de Compostela, Spain, September 4-7
Event date
Sep 4, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—