Jumping Unbounded Nonlinearities and ALP Condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966336" target="_blank" >RIV/49777513:23520/22:43966336 - isvavai.cz</a>
Result on the web
<a href="https://wseas.com/journals/articles.php?id=6575" target="_blank" >https://wseas.com/journals/articles.php?id=6575</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37394/23206.2022.21.26" target="_blank" >10.37394/23206.2022.21.26</a>
Alternative languages
Result language
angličtina
Original language name
Jumping Unbounded Nonlinearities and ALP Condition
Original language description
We investigate the existence of solutions to the nonlinear problem u′′(x) + λ_+u^+(x) − λ_−u^−(x) + g(x, u(x)) = f (x) , x ∈ (0, 2π) , u(0) = u(2π) , u′(0) = u′(2π) ,where the point[λ_+, λ_−] is a point of the Fučík spectrum Σ = ⋃ Σ_m. We denote φ_m any nontrivial solution toour problem with g = f = 0 corresponding to [λ_+, λ_−] ∈ Σ_m. We assume thatg(x, s) = γ(x, s)s + h(x, s) and the nonlinearity g satisfies ALP type condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
WSEAS Transactions on Mathematics
ISSN
1109-2769
e-ISSN
2224-2880
Volume of the periodical
21
Issue of the periodical within the volume
April 2022
Country of publishing house
GR - GREECE
Number of pages
11
Pages from-to
196-206
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85133679468