Complete regular dessins of odd prime power
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956165" target="_blank" >RIV/49777513:23520/19:43956165 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0012365X18303224?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X18303224?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2018.09.028" target="_blank" >10.1016/j.disc.2018.09.028</a>
Alternative languages
Result language
angličtina
Original language name
Complete regular dessins of odd prime power
Original language description
A dessin is a 2-cell embedding of a connected 2-coloured bipartite graph into an orientable closed surface. A dessin is regular if its group of colour- and orientation-preserving automorphisms acts regularly on the edges. In this paper we employ group-theoretic method to determine and enumerate the isomorphism classes of regular dessins with complete bipartite underlying graphs of odd prime power order.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
342
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
314-325
UT code for WoS article
000453498800003
EID of the result in the Scopus database
2-s2.0-85056200072