Iterative learning control in high-performance motion systems: From theory to implementation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956325" target="_blank" >RIV/49777513:23520/19:43956325 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ETFA.2019.8868996" target="_blank" >http://dx.doi.org/10.1109/ETFA.2019.8868996</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ETFA.2019.8868996" target="_blank" >10.1109/ETFA.2019.8868996</a>
Alternative languages
Result language
angličtina
Original language name
Iterative learning control in high-performance motion systems: From theory to implementation
Original language description
Iterative learning control (ILC) enables a perfect compensation for systems that perform the same task over and over again. The aim of this paper is to demonstrate practical applicability of two various state-of-the-art ILC algorithms to point-to-point positioning systems. A simple Frequency domain ILC approach is exploited focusing on systems with exactly repeating motion tasks. Furthermore, flexible ILC is employed to enable learning also for non-repeating tasks. Particular steps providing a seamless transfer from theory and algorithms to practical implementation in a real-time environment by means of industrial-grade SW and HW are given. They may serve as a practical example of a workflow suitable for a wide range of motion control applications. Potential benefits of the learning-type control in comparison with conventional feedback and feedforward control are discussed as well.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings 2019 24th IEEE InternationalConference on Emerging Technologiesand Factory Automation (ETFA)
ISBN
978-1-72810-303-7
ISSN
1946-0740
e-ISSN
1946-0759
Number of pages
6
Pages from-to
851-856
Publisher name
University of Zaragoza
Place of publication
Zaragoza
Event location
Zaragoza, Spain
Event date
Sep 10, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—