On full Zakharov equation and its approximations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43955660" target="_blank" >RIV/49777513:23520/20:43955660 - isvavai.cz</a>
Result on the web
<a href="http://www.elsevier.com/locate/physd" target="_blank" >http://www.elsevier.com/locate/physd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2019.132168" target="_blank" >10.1016/j.physd.2019.132168</a>
Alternative languages
Result language
angličtina
Original language name
On full Zakharov equation and its approximations
Original language description
We study the solvability of the Zakharov equation in a bounded domain under homogeneous Dirichlet or Navier boundary conditions. This problem is a consequence of the system of equations derived by Zakharov to model the Langmuir collapse in plasma physics. Assumptions for the existence and nonexistence of a ground state solution as well as the multiplicity of solutions are discussed. Moreover, we consider formal approximations of the Zakharov equation obtained by the Taylor expansion of the exponential term. We illustrate that the existence and nonexistence results are substantially different from the corresponding results for the original problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICA D-NONLINEAR PHENOMENA
ISSN
0167-2789
e-ISSN
—
Volume of the periodical
401
Issue of the periodical within the volume
January 2020, article 132168
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
1-8
UT code for WoS article
000501613000014
EID of the result in the Scopus database
2-s2.0-85071476615