All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LSTM-Based Speech Segmentation Trained on Different Foreign Languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959258" target="_blank" >RIV/49777513:23520/20:43959258 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-58323-1_49" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-58323-1_49</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58323-1_49" target="_blank" >10.1007/978-3-030-58323-1_49</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LSTM-Based Speech Segmentation Trained on Different Foreign Languages

  • Original language description

    This paper describes experiments on speech segmentation by using bidirectional LSTM neural networks. The networks were trained on various languages (English, German, Russian and Czech), segmentation experiments were performed on 4 Czech professional voices. To be able to use various combinations of foreign languages, we defined a reduced phonetic alphabet based on IPA notation. It consists of 26 phones, all included in all languages. To increase the segmentation accuracy, we applied an iterative procedure based on detection of improperly segmented data and retraining of the network. Experiments confirmed the convergence of the procedure. A comparison with a reference HMM-based segmentation with additional manual corrections was performed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-19324S" target="_blank" >GA19-19324S: Fully Trainable Deep Neural Network Based Czech Text-to-Speech Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 23rd International Conference, TSD 2020, Brno, Czech Republic, September 8-11, 2020, Proceedings

  • ISBN

    978-3-030-58322-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    456-464

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Brno, Czech Republic

  • Event date

    Sep 8, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article