All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Phonetic speech segmentation of audiobooks by using adapted LSTM-based acoustic models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966127" target="_blank" >RIV/49777513:23520/22:43966127 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-22419-5_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-22419-5_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-22419-5_27" target="_blank" >10.1007/978-3-031-22419-5_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Phonetic speech segmentation of audiobooks by using adapted LSTM-based acoustic models

  • Original language description

    This paper describes experiments on phonetic speech segmentation of audiobooks by using LSTM neural networks. The segmentation procedure includes an iterative adaptation of an initial speaker-independent model. The experimental data involves 5 audiobooks recorded by various renowned Czech speakers. About 20 minutes long portions of each audiobook were precisely manually segmented by phonetic experts. We focused mainly on the optimal setting of the iterative segmentation procedure and explored the effect of the most relevant parameters on the resulting segmentation accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-27800S" target="_blank" >GA22-27800S: Transformers of multiple modalities for more natural spoken dialog</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Artificial Intelligence

  • ISBN

    978-3-031-22418-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    "317–327"

  • Publisher name

    Springer Nature Switzerland

  • Place of publication

    Cham

  • Event location

    Cartagena, Kolumbie

  • Event date

    Nov 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article