Phonetic speech segmentation of audiobooks by using adapted LSTM-based acoustic models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966127" target="_blank" >RIV/49777513:23520/22:43966127 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-22419-5_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-22419-5_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-22419-5_27" target="_blank" >10.1007/978-3-031-22419-5_27</a>
Alternative languages
Result language
angličtina
Original language name
Phonetic speech segmentation of audiobooks by using adapted LSTM-based acoustic models
Original language description
This paper describes experiments on phonetic speech segmentation of audiobooks by using LSTM neural networks. The segmentation procedure includes an iterative adaptation of an initial speaker-independent model. The experimental data involves 5 audiobooks recorded by various renowned Czech speakers. About 20 minutes long portions of each audiobook were precisely manually segmented by phonetic experts. We focused mainly on the optimal setting of the iterative segmentation procedure and explored the effect of the most relevant parameters on the resulting segmentation accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA22-27800S" target="_blank" >GA22-27800S: Transformers of multiple modalities for more natural spoken dialog</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Artificial Intelligence
ISBN
978-3-031-22418-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
11
Pages from-to
"317–327"
Publisher name
Springer Nature Switzerland
Place of publication
Cham
Event location
Cartagena, Kolumbie
Event date
Nov 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—