Inverse Covariance Intersection Fusion of Multiple Estimates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959540" target="_blank" >RIV/49777513:23520/20:43959540 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.23919/FUSION45008.2020.9190614" target="_blank" >https://doi.org/10.23919/FUSION45008.2020.9190614</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/FUSION45008.2020.9190614" target="_blank" >10.23919/FUSION45008.2020.9190614</a>
Alternative languages
Result language
angličtina
Original language name
Inverse Covariance Intersection Fusion of Multiple Estimates
Original language description
Linear fusion of estimates is a basic tool for combining probabilistic data. If the correlation of estimation errors is unknown, the fusion performance is evaluated with respect to the worst case. Inverse Covariance Intersection fusion is a rule for combining two estimates with partially known crosscorrelation matrix. This paper generalises the rule to fusing multiple estimates. First, the generalised assumption and the essential theory are presented. A suboptimal solution with a simple parametrisation is derived next and it is shown to be better than the solution for unknown correlation. Finally, a recursive fusion of multiple estimates is designed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GC20-06054J" target="_blank" >GC20-06054J: Intelligent Distributed Estimation Architectures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION)
ISBN
978-0-578-64709-8
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
IEEE
Place of publication
Sun City
Event location
Sun City, Jihoafrická republika
Event date
Jul 6, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—