Generalized Picone inequalities and their applications to (p,q)-Laplace equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959657" target="_blank" >RIV/49777513:23520/20:43959657 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/view/journals/math/18/1/article-p1030.xml" target="_blank" >https://www.degruyter.com/view/journals/math/18/1/article-p1030.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2020-0065" target="_blank" >10.1515/math-2020-0065</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Picone inequalities and their applications to (p,q)-Laplace equations
Original language description
We obtain a generalization of the Picone inequality which, in combination with the classical Picone inequality, appears to be useful for problems with the (p,q)-Laplace type operators. With its help, as well as with the help of several other known generalized Picone inequalities, we provide some nontrivial facts on the existence and nonexistence of positive solutions to the zero Dirichlet problem for the equation −Δ???????? − Δ???????? = ????????(????, ????,∇????) in a bounded domain Ω ⊂ R???? under certain assumptions on the nonlinearity and with a special attention to the resonance case ????????(????, ????,∇????) = ????1(????)|????|????−2???? + ????|????|????−2????, where ????1(????) is the first eigenvalue of the p-Laplacian.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
SEP 30 2020
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1030-1044
UT code for WoS article
000577015100001
EID of the result in the Scopus database
2-s2.0-85093669675