Modelling wave dispersion in fluid saturating periodic scaffolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43960233" target="_blank" >RIV/49777513:23520/21:43960233 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0096300321003349?token=2C63544A7C0815B5113B4E2502DD0AA2AD593CED8C5CCC0EC13FF20CF6656192A30903E22449550ADEB2998455EB34A9&originRegion=eu-west-1&originCreation=20211001055224" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0096300321003349?token=2C63544A7C0815B5113B4E2502DD0AA2AD593CED8C5CCC0EC13FF20CF6656192A30903E22449550ADEB2998455EB34A9&originRegion=eu-west-1&originCreation=20211001055224</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2021.126256" target="_blank" >10.1016/j.amc.2021.126256</a>
Alternative languages
Result language
angličtina
Original language name
Modelling wave dispersion in fluid saturating periodic scaffolds
Original language description
Acoustic waves in a slightly compressible fluid saturating porous periodic structure are studied using two complementary approaches: 1) the periodic homogenization (PH) method provides effective model equations for a general dynamic problem imposed in a bounded medium, 2) harmonic acoustic waves are studied in an infinite medium using the Floquet-Bloch (FB) wave decomposition. In contrast with usual simplifications, the advection phenomenon of the Navier-Stokes equations is accounted for. For this, an acoustic approximation is applied to linearize the advection term. The homogenization results are based the periodic unfolding method combined with the asymptotic expansion technique providing a straight upscaling procedure which leads to the macroscopic model defined in terms of the effective model parameters. These are computed using the characteristic responses of the porous microstructure. Using the FB theory, we derive dispersion equations for the scaffolds saturated by the inviscid, or the viscous, barotropic fluids, whereby the advection due to a permanent flow in the porous structures is respected. A computational study is performed for the numerical models obtained using the finite element discretization. For the FB methods-based dispersion analysis, quadratic eigenvalue problems must be solved. The numerical examples show influences of the microstructure size and of the advection generating an anisotropy of the acoustic waves dispersion.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
410
Issue of the periodical within the volume
DEC 1 2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
1-29
UT code for WoS article
000718889900002
EID of the result in the Scopus database
2-s2.0-85106318053