All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Applying EEND Diarization to Telephone Recordings from a Call Center

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962459" target="_blank" >RIV/49777513:23520/21:43962459 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-87802-3_72" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-87802-3_72</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-87802-3_72" target="_blank" >10.1007/978-3-030-87802-3_72</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Applying EEND Diarization to Telephone Recordings from a Call Center

  • Original language description

    In this paper, we focus on the issue of speaker diarization of data from a real call center. We have previously proposed a specialized solution to the problem, which employed additional knowledge about the identities of the phone operators (in our case, the language counselors from the Language Consulting Center), thus improving performance over the baseline. But a recent end-to-end diarization method, EEND, has since proven very successful on other data and was shown to surpass the previous state of the art in the field. Thus, we chose to compare this new method with our own previous approach. Using an existing implementation of the EEND method (adapted using a small amount of the target data from the Language Consulting Center), we successfully surpass the performance of our previous approach (17.42% vs. 19.39% DER), without the need for any additional information about speaker identities. The majority of the remaining diarization error of the EEND system is due to incorrect decisions between speech and silence, rather than speaker confusion. For comparison, we also show the results of a more standard diarization approach, represented by the method used in the Kaldi toolkit.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LM2018101" target="_blank" >LM2018101: Digital Research Infrastructure for the Language Technologies, Arts and Humanities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    23rd International Conference, SPECOM 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings

  • ISBN

    978-3-030-87801-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    807-817

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    St. Petersburg, Russia (virtual)

  • Event date

    Sep 27, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article