Automorphisms and Isomorphisms of Maps in Linear Time
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962831" target="_blank" >RIV/49777513:23520/21:43962831 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/opus/volltexte/2021/14068/pdf/lipics-vol198-icalp2021-complete.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2021/14068/pdf/lipics-vol198-icalp2021-complete.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.86" target="_blank" >10.4230/LIPIcs.ICALP.2021.86</a>
Alternative languages
Result language
angličtina
Original language name
Automorphisms and Isomorphisms of Maps in Linear Time
Original language description
A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no “truly subquadratic” algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
48th International Colloquium on Automata, Languages, and Programming
ISBN
978-3-95977-195-5
ISSN
1868-8969
e-ISSN
—
Number of pages
15
Pages from-to
"86:1"-"86:15"
Publisher name
Dagstuhl Publishing
Place of publication
Saarbrücken/Wadern
Event location
Glasgow
Event date
Jul 12, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—