All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automorphisms and Isomorphisms of Maps in Linear Time

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962831" target="_blank" >RIV/49777513:23520/21:43962831 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/volltexte/2021/14068/pdf/lipics-vol198-icalp2021-complete.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2021/14068/pdf/lipics-vol198-icalp2021-complete.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.86" target="_blank" >10.4230/LIPIcs.ICALP.2021.86</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automorphisms and Isomorphisms of Maps in Linear Time

  • Original language description

    A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no “truly subquadratic” algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    48th International Colloquium on Automata, Languages, and Programming

  • ISBN

    978-3-95977-195-5

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    "86:1"-"86:15"

  • Publisher name

    Dagstuhl Publishing

  • Place of publication

    Saarbrücken/Wadern

  • Event location

    Glasgow

  • Event date

    Jul 12, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article