All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Cheeger problem for rotationally invariant domains domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43964192" target="_blank" >RIV/49777513:23520/21:43964192 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00229-020-01260-9" target="_blank" >https://link.springer.com/article/10.1007/s00229-020-01260-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00229-020-01260-9" target="_blank" >10.1007/s00229-020-01260-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Cheeger problem for rotationally invariant domains domains

  • Original language description

    We investigate the properties of the Cheeger sets of rotationally invariant, bounded domains ⊂ Rn. For a rotationally invariant Cheeger set C, the free boundary ∂C ∩ consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if is convex, then the free boundary of C consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of C is closed, convex, and of class C1,1. Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of C.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MANUSCRIPTA MATHEMATICA

  • ISSN

    0025-2611

  • e-ISSN

  • Volume of the periodical

    166

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    503-522

  • UT code for WoS article

    000589464000001

  • EID of the result in the Scopus database

    2-s2.0-85095999523