On the Cheeger problem for rotationally invariant domains domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43964192" target="_blank" >RIV/49777513:23520/21:43964192 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00229-020-01260-9" target="_blank" >https://link.springer.com/article/10.1007/s00229-020-01260-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00229-020-01260-9" target="_blank" >10.1007/s00229-020-01260-9</a>
Alternative languages
Result language
angličtina
Original language name
On the Cheeger problem for rotationally invariant domains domains
Original language description
We investigate the properties of the Cheeger sets of rotationally invariant, bounded domains ⊂ Rn. For a rotationally invariant Cheeger set C, the free boundary ∂C ∩ consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if is convex, then the free boundary of C consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of C is closed, convex, and of class C1,1. Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of C.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MANUSCRIPTA MATHEMATICA
ISSN
0025-2611
e-ISSN
—
Volume of the periodical
166
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
503-522
UT code for WoS article
000589464000001
EID of the result in the Scopus database
2-s2.0-85095999523