All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rank 1 Convex Hulls of Isotropic Functions in Dimension 2 by 2.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05010055" target="_blank" >RIV/67985840:_____/01:05010055 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rank 1 Convex Hulls of Isotropic Functions in Dimension 2 by 2.

  • Original language description

    Let fi be a rotationally invariant ( with respect to the proper orthogonal group ) function defined on the set M 2x2 af all 2 by 2 matrices. Based on conditions for the rank 1 convexity of fi in terms of signed invariants of A ( to be defined below ), aniterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F00%2F1516" target="_blank" >GA201/00/1516: Microstructure, relaxation, phase transitions, and hysteresis in shape memory alloys</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Bohemica

  • ISSN

    0862-7959

  • e-ISSN

  • Volume of the periodical

    126

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    9

  • Pages from-to

    521-529

  • UT code for WoS article

  • EID of the result in the Scopus database