Copula-based convolution for fast point-mass prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43962834" target="_blank" >RIV/49777513:23520/22:43962834 - isvavai.cz</a>
Result on the web
<a href="https://dy.doi.org/10.1016/j.sigpro.2021.108367" target="_blank" >https://dy.doi.org/10.1016/j.sigpro.2021.108367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2021.108367" target="_blank" >10.1016/j.sigpro.2021.108367</a>
Alternative languages
Result language
angličtina
Original language name
Copula-based convolution for fast point-mass prediction
Original language description
This paper deals with the state estimation of the nonlinear stochastic dynamic discrete-in-time models by a numerical solution to the Bayesian recursive relations represented by the point-mass filter (PMF). In particular, emphasis is placed on the development of the fast convolution, which reduces computational complexity of the PMF prediction step by the orders of magnitude for models with a diagonal form of the dynamic equation. The copula-based convolution decomposes the joint conditional density into the marginal densities (allowing efficient prediction) and an easy-to-calculate copula density function. As a consequence, it has the linear growth of its computational complexity with the state dimension, which is in a contrast with the exponential growth of the standard convolution complexity in PMF methods. The proposed fast convolution is analysed and illustrated in a numerical study for a static example and a dynamic terrain-aided navigation scenario. An exemplary implementation of the proposed convolution is provided along with the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GC20-06054J" target="_blank" >GC20-06054J: Intelligent Distributed Estimation Architectures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Signal Processing
ISSN
0165-1684
e-ISSN
1872-7557
Volume of the periodical
192
Issue of the periodical within the volume
March 2022
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000731957400002
EID of the result in the Scopus database
2-s2.0-85118532393