All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969678" target="_blank" >RIV/49777513:23520/23:43969678 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2405896323009928?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896323009928?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2023.10.621" target="_blank" >10.1016/j.ifacol.2023.10.621</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamics

  • Original language description

    This paper deals with state estimation of stochastic models with linear state dynamics, continuous or discrete in time. The emphasis is laid on a numerical solution to the state prediction by the time-update step of the grid-point-based point-mass filter (PMF), which is the most computationally demanding part of the PMF algorithm. A novel way of manipulating the grid, leading to the time-update in form of a convolution, is proposed. This reduces the PMF time complexity from quadratic to log-linear with respect to the number of grid points. Furthermore, the number of unique transition probability values is greatly reduced causing a significant reduction of the data storage needed. The proposed PMF prediction step is verified in a numerical study.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IFAC World Congress 2023

  • ISBN

    978-1-71387-234-4

  • ISSN

    2405-8963

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    5937-5942

  • Publisher name

    Elsevier B.V.

  • Place of publication

    Yokohama

  • Event location

    Yokohama, Japonsko

  • Event date

    Jul 9, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article