Efficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969678" target="_blank" >RIV/49777513:23520/23:43969678 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2405896323009928?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896323009928?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2023.10.621" target="_blank" >10.1016/j.ifacol.2023.10.621</a>
Alternative languages
Result language
angličtina
Original language name
Efficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamics
Original language description
This paper deals with state estimation of stochastic models with linear state dynamics, continuous or discrete in time. The emphasis is laid on a numerical solution to the state prediction by the time-update step of the grid-point-based point-mass filter (PMF), which is the most computationally demanding part of the PMF algorithm. A novel way of manipulating the grid, leading to the time-update in form of a convolution, is proposed. This reduces the PMF time complexity from quadratic to log-linear with respect to the number of grid points. Furthermore, the number of unique transition probability values is greatly reduced causing a significant reduction of the data storage needed. The proposed PMF prediction step is verified in a numerical study.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IFAC World Congress 2023
ISBN
978-1-71387-234-4
ISSN
2405-8963
e-ISSN
—
Number of pages
6
Pages from-to
5937-5942
Publisher name
Elsevier B.V.
Place of publication
Yokohama
Event location
Yokohama, Japonsko
Event date
Jul 9, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—