All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Danish Fungi 2020 - Not Just Another Image Recognition Dataset

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966004" target="_blank" >RIV/49777513:23520/22:43966004 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/22:00362997

  • Result on the web

    <a href="https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV51458.2022.00334" target="_blank" >10.1109/WACV51458.2022.00334</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Danish Fungi 2020 - Not Just Another Image Recognition Dataset

  • Original language description

    We introduce a novel fine-grained dataset and bench-mark, the Danish Fungi 2020 (DF20). The dataset, constructed from observations submitted to the Atlas of Danish Fungi, is unique in its taxonomy-accurate class labels, small number of errors, highly unbalanced long-tailed class distribution, rich observation metadata, and well-defined class hierarchy. DF20 has zero overlap with ImageNet, al-lowing unbiased comparison of models fine-tuned from publicly available ImageNet checkpoints. The proposed evaluation protocol enables testing the ability to improve classification using metadata - e.g. precise geographic location, habitat, and substrate, facilitates classifier calibration testing, and finally allows to study the impact of the device settings on the classification performance. Experiments using Convolutional Neural Networks (CNN) and the recent Vision Transformers (ViT) show that DF20 presents a challenging task. Interestingly, ViT achieves results su-perior to CNN baselines with 80.45% accuracy and 0.743 macro F1 score, reducing the CNN error by 9% and 12% respectively. A simple procedure for including metadata into the decision process improves the classification accuracy by more than 2.95 percentage points, reducing the error rate by 15%. The source code for all methods and experiments is available at https://sites.google.com/view/danish-fungi-dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022

  • ISBN

    978-1-66540-915-5

  • ISSN

    2472-6737

  • e-ISSN

    2642-9381

  • Number of pages

    11

  • Pages from-to

    3281-3291

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Waikoloa, Hawai, Spojené státy

  • Event date

    Jan 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000800471203036