Danish Fungi 2020 - Not Just Another Image Recognition Dataset
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966004" target="_blank" >RIV/49777513:23520/22:43966004 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/22:00362997
Result on the web
<a href="https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV51458.2022.00334" target="_blank" >10.1109/WACV51458.2022.00334</a>
Alternative languages
Result language
angličtina
Original language name
Danish Fungi 2020 - Not Just Another Image Recognition Dataset
Original language description
We introduce a novel fine-grained dataset and bench-mark, the Danish Fungi 2020 (DF20). The dataset, constructed from observations submitted to the Atlas of Danish Fungi, is unique in its taxonomy-accurate class labels, small number of errors, highly unbalanced long-tailed class distribution, rich observation metadata, and well-defined class hierarchy. DF20 has zero overlap with ImageNet, al-lowing unbiased comparison of models fine-tuned from publicly available ImageNet checkpoints. The proposed evaluation protocol enables testing the ability to improve classification using metadata - e.g. precise geographic location, habitat, and substrate, facilitates classifier calibration testing, and finally allows to study the impact of the device settings on the classification performance. Experiments using Convolutional Neural Networks (CNN) and the recent Vision Transformers (ViT) show that DF20 presents a challenging task. Interestingly, ViT achieves results su-perior to CNN baselines with 80.45% accuracy and 0.743 macro F1 score, reducing the CNN error by 9% and 12% respectively. A simple procedure for including metadata into the decision process improves the classification accuracy by more than 2.95 percentage points, reducing the error rate by 15%. The source code for all methods and experiments is available at https://sites.google.com/view/danish-fungi-dataset.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022
ISBN
978-1-66540-915-5
ISSN
2472-6737
e-ISSN
2642-9381
Number of pages
11
Pages from-to
3281-3291
Publisher name
IEEE
Place of publication
New York
Event location
Waikoloa, Hawai, Spojené státy
Event date
Jan 4, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000800471203036