All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966079" target="_blank" >RIV/49777513:23520/22:43966079 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION49751.2022.9841367" target="_blank" >https://doi.org/10.23919/FUSION49751.2022.9841367</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION49751.2022.9841367" target="_blank" >10.23919/FUSION49751.2022.9841367</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition

  • Original language description

    The paper considers the solution to the state estimation problem of nonlinear dynamic stochastic systems by the particle filters. It focuses on the marginal particle filter algorithms which generate samples directly in the marginal space for the recent state. Their standard implementation calculates the sample weights by combining the samples from two consecutive time instants in the transition and proposal density function evaluations. This results in computational complexity quadratic in sample size. The paper proposes an efficient implementation of the marginal particle filter for which a functional tensor decomposition of the transition and proposal densities is calculated. The computational complexity of the proposed implementation is linear in sample size and the decomposition rank can be used to achieve a trade-off between accuracy and computational costs. The balance between the complexity and the estimate quality can be tuned by selecting the rank of the decomposition. The proposed implementation is demonstrated using two numerical examples with a univariate non-stationary growth model and terrain-aided navigation scenario.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 25th International Conference on Information Fusion, FUSION 2022

  • ISBN

    978-1-73774-972-1

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Linköping, Sweden

  • Event location

    Linköping, Sweden

  • Event date

    Jul 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000855689000167