All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Criticality Metric for Object Detection Deep Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966110" target="_blank" >RIV/49777513:23520/22:43966110 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-14862-0_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-14862-0_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-14862-0_20" target="_blank" >10.1007/978-3-031-14862-0_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Criticality Metric for Object Detection Deep Neural Networks

  • Original language description

    The complexity of state-of-the-art Deep Neural Network (DNN) architectures exacerbates the search for safety relevant metrics and methods that could be used for functional safety assessments. In this article, we investigate Neurons&apos; Criticality (the ability to affect the decision process) for several object detection DNN architectures. As a first step, we introduce the Neural Criticality metric for object detection DNNs and set a theoretical background. Subsequently, by conducting experiments, we verify that removing one neuron from the computational graph of a DNN can have a significant (positive, as well as negative) influence on the prediction&apos;s precision (object classification and localization). Finally, we build statistics for each neuron from pre-trained networks on the COCO object detection validation dataset and examine the network stability for the most critical neurons in order to prove our metric&apos;s validity.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/TN01000024" target="_blank" >TN01000024: National Competence Center - Cybernetics and Artificial Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Safety, Reliability and Security, SAFECOMP 2022 Workshops

  • ISBN

    978-3-031-14861-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    276-288

  • Publisher name

    SPRINGER-VERLAG BERLIN

  • Place of publication

    BERLIN

  • Event location

    Munich, GERMANY

  • Event date

    Sep 6, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000866543800026